New results on upper domatic number of graphs
نویسندگان
چکیده مقاله:
For a graph $G = (V, E)$, a partition $pi = {V_1,$ $V_2,$ $ldots,$ $V_k}$ of the vertex set $V$ is an textit{upper domatic partition} if $V_i$ dominates $V_j$ or $V_j$ dominates $V_i$ or both for every $V_i, V_j in pi$, whenever $i neq j$. The textit{upper domatic number} $D(G)$ is the maximum order of an upper domatic partition. We study the properties of upper domatic number and propose an upper bound in terms of clique number. Further, we discuss the upper domatic number of certain graph classes including unicyclic graphs and power graphs of paths and cycles.
منابع مشابه
The upper domatic number of powers of graphs
Let $A$ and $B$ be two disjoint subsets of the vertex set $V$ of a graph $G$. The set $A$ is said to dominate $B$, denoted by $A rightarrow B$, if for every vertex $u in B$ there exists a vertex $v in A$ such that $uv in E(G)$. For any graph $G$, a partition $pi = {V_1,$ $V_2,$ $ldots,$ $V_p}$ of the vertex set $V$ is an textit{upper domatic partition} if $V_i rightarrow V_j$ or $V_j rightarrow...
متن کاملUpper bounds on the signed total (k, k)-domatic number of graphs
Let G be a graph with vertex set V (G), and let f : V (G) −→ {−1, 1} be a two-valued function. If k ≥ 1 is an integer and ∑ x∈N(v) f(x) ≥ k for each v ∈ V (G), where N(v) is the neighborhood of v, then f is a signed total k-dominating function on G. A set {f1, f2, . . . , fd} of distinct signed total k-dominating functions on G with the property that ∑d i=1 fi(x) ≤ k for each x ∈ V (G), is call...
متن کاملThe Domatic Number of Regular Graphs
The domatic number of a graph G is the maximum number of dominating sets into which the vertex set of G can be partitioned. We show that the domatic number of a random r-regular graph is almost surely at most r, and that for 3-regular random graphs, the domatic number is almost surely equal to 3. We also give a lower bound on the domatic number of a graph in terms of order, minimum degree and m...
متن کاملChromatic Transversal Domatic Number of Graphs
The chromatic number χ(G) of a graph G is the minimum number of colours required to colour the vertices of G in such a way that no two adjacent vertices of G receive the same colour. A partition of V into χ(G) independent sets (called colour classes) is said to be a χpartition of G. A set S ⊆ V is called a dominating set of G if every vertex in V − S is adjacent to a vertex in S. A dominating s...
متن کاملon the total domatic number of regular graphs
a set $s$ of vertices of a graph $g=(v,e)$ without isolated vertex is a {em total dominating set} if every vertex of $v(g)$ is adjacent to some vertex in $s$. the {em total domatic number} of a graph $g$ is the maximum number of total dominating sets into which the vertex set of $g$ can be partitioned. we show that the total domatic number of a random $r$-regular graph is almost...
متن کاملمنابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ذخیره در منابع من قبلا به منابع من ذحیره شده{@ msg_add @}
عنوان ژورنال
دوره 5 شماره 2
صفحات 125- 137
تاریخ انتشار 2020-12-01
با دنبال کردن یک ژورنال هنگامی که شماره جدید این ژورنال منتشر می شود به شما از طریق ایمیل اطلاع داده می شود.
میزبانی شده توسط پلتفرم ابری doprax.com
copyright © 2015-2023